Difference between revisions of "Value of Anger at 0"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\textbf{J}_{\nu}(0)=\dfrac{\sin(\pi \nu)}...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Value of Anger at 0|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\textbf{J}_{\nu}(0)=\dfrac{\sin(\pi \nu)}{\pi \nu},$$
 
$$\textbf{J}_{\nu}(0)=\dfrac{\sin(\pi \nu)}{\pi \nu},$$
where $\textbf{J}_{\nu}$ denotes the [[Anger function]], $\sin$ denotes the [[sine]], and $\pi$ denotes [[pi]].
+
where $\textbf{J}_{\nu}$ denotes an [[Anger function]], $\sin$ denotes the [[sine]], and $\pi$ denotes [[pi]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]

Latest revision as of 05:49, 6 June 2016

Theorem

The following formula holds: $$\textbf{J}_{\nu}(0)=\dfrac{\sin(\pi \nu)}{\pi \nu},$$ where $\textbf{J}_{\nu}$ denotes an Anger function, $\sin$ denotes the sine, and $\pi$ denotes pi.

Proof

References