Difference between revisions of "Anger three-term recurrence"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Anger recurrence relation|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$
 
$$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$
 
where $\textbf{J}_{\nu}$ denote the [[Anger function]], $\pi$ denotes [[pi]], and $\sin$ denotes [[sine]].
 
where $\textbf{J}_{\nu}$ denote the [[Anger function]], $\pi$ denotes [[pi]], and $\sin$ denotes [[sine]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]

Latest revision as of 05:50, 6 June 2016

Theorem

The following formula holds: $$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$ where $\textbf{J}_{\nu}$ denote the Anger function, $\pi$ denotes pi, and $\sin$ denotes sine.

Proof

References