Difference between revisions of "Anger three-term recurrence"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$ | $$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$ | ||
where $\textbf{J}_{\nu}$ denote the [[Anger function]], $\pi$ denotes [[pi]], and $\sin$ denotes [[sine]]. | where $\textbf{J}_{\nu}$ denote the [[Anger function]], $\pi$ denotes [[pi]], and $\sin$ denotes [[sine]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] |
Latest revision as of 05:50, 6 June 2016
Theorem
The following formula holds: $$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$ where $\textbf{J}_{\nu}$ denote the Anger function, $\pi$ denotes pi, and $\sin$ denotes sine.