Difference between revisions of "Erfc"

From specialfunctionswiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 10: Line 10:
 
</div>
 
</div>
  
<center>{{:Error functions footer}}</center>
+
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Error function|next=findme}}: 7.1.2
 +
 
 +
{{:Error functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 21:56, 6 July 2016

The complementary error function $\mathrm{erfc}$ is defined by the formula $$\mathrm{erfc}(z)=1-\mathrm{erf}(z),$$ where $\mathrm{erf}$ denotes the error function.

References

Error functions
Erfcthumb.png
Complementary $\mathrm{erf}$