Difference between revisions of "Barnes G at positive integer"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$G(n) = \left\{ \begin{array}{ll}...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Barnes G at positive integer|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$G(n) = \left\{ \begin{array}{ll}
 
$$G(n) = \left\{ \begin{array}{ll}
 
0&\quad n=-1,-2,\ldots \\
 
0&\quad n=-1,-2,\ldots \\
\displaystyle\prod_{i=0}^{n-2} i!&\quad n=0,1,2,\ldots,
+
\displaystyle\prod_{k=0}^{n-2} k!&\quad n=0,1,2,\ldots,
 
\end{array} \right.$$
 
\end{array} \right.$$
 
where $G$ denotes the [[Barnes G]] function and $i!$ denotes the [[factorial]].
 
where $G$ denotes the [[Barnes G]] function and $i!$ denotes the [[factorial]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 12:52, 17 September 2016

Theorem

The following formula holds: $$G(n) = \left\{ \begin{array}{ll} 0&\quad n=-1,-2,\ldots \\ \displaystyle\prod_{k=0}^{n-2} k!&\quad n=0,1,2,\ldots, \end{array} \right.$$ where $G$ denotes the Barnes G function and $i!$ denotes the factorial.

Proof

References