Difference between revisions of "Anger function"

From specialfunctionswiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]
The Anger function is defined by
+
Let $\nu \in \mathbb{C}$. The Anger function $\mathbf{J}_{\nu}$ is defined by
 
$$\mathbf{J}_{\nu}(z) = \dfrac{1}{\pi} \displaystyle\int_0^{\pi} \cos(\nu \theta - z \sin(\theta)) \mathrm{d}\theta.$$
 
$$\mathbf{J}_{\nu}(z) = \dfrac{1}{\pi} \displaystyle\int_0^{\pi} \cos(\nu \theta - z \sin(\theta)) \mathrm{d}\theta.$$
  
Line 17: Line 17:
  
 
=Properties=
 
=Properties=
{{:Value of Anger at 0}}
+
[[Value of Anger at 0]]<br />
{{:Anger recurrence relation}}
+
[[Anger recurrence relation]]<br />
{{:Anger derivative recurrence}}
+
[[Anger derivative recurrence]]<br />
{{:Relationship between Anger function and Bessel J sub nu}}
+
[[Relationship between Anger function and Bessel J sub nu]]<br />
{{:Relationship between Weber function and Anger function}}
+
[[Relationship between Weber function and Anger function]]<br />
{{:Relationship between Anger function and Weber function}}
+
[[Relationship between Anger function and Weber function]]<br />
  
 
=See Also=
 
=See Also=
 
[[Bessel J]]<br />
 
[[Bessel J]]<br />
[[Weber function]]
+
[[Weber function]]<br />
  
 
=References=
 
=References=
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_498.htm Abramowitz and Stegun]<br />
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Relationship between modified Struve L and modified spherical Bessel j functions|next=Anger of integer order is Bessel J}}: 12.3.1

Latest revision as of 04:05, 6 June 2016

Let $\nu \in \mathbb{C}$. The Anger function $\mathbf{J}_{\nu}$ is defined by $$\mathbf{J}_{\nu}(z) = \dfrac{1}{\pi} \displaystyle\int_0^{\pi} \cos(\nu \theta - z \sin(\theta)) \mathrm{d}\theta.$$

Properties

Value of Anger at 0
Anger recurrence relation
Anger derivative recurrence
Relationship between Anger function and Bessel J sub nu
Relationship between Weber function and Anger function
Relationship between Anger function and Weber function

See Also

Bessel J
Weber function

References