Difference between revisions of "Dilogarithm"

From specialfunctionswiki
Jump to: navigation, search
 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
The dilogarithm is the function
+
The dilogarithm function $\mathrm{Li}_2$ is defined for $|z| \leq 1$ by
$$\mathrm{Li}_2(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{k^2}; |z| \leq 1,$$
+
$$\mathrm{Li}_2(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{k^2},$$
 
which is a special case of the [[polylogarithm]].
 
which is a special case of the [[polylogarithm]].
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Domaincoloringdilogarithm.png|[[Domain coloring]] of [[analytic continuation]] of the dilogarithm.
+
File:Complexdilogarithmplot.png|[[Domain coloring]] of $\mathrm{Li}_2$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 
 
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between dilogarithm and log(1-z)/z]]<br />
<strong>Theorem:</strong> The following formula holds:
+
[[Relationship between Li 2(1),Li 2(-1), and pi]]<br />
$$\dfrac{d}{dx} \mathrm{Li}_2 \left( -\dfrac{1}{x} \right) = \dfrac{\log(1+\frac{1}{x})}{x}=\dfrac{\log(1+x)-\log x}{x}.$$
+
[[Li 2(1)=pi^2/6]]<br />
<div class="mw-collapsible-content">
+
[[Relationship between Li 2(-1/x),Li 2(-x),Li 2(-1), and log^2(x)]]<br />
<strong>Proof:</strong>
+
[[Derivative of Li 2(-1/x)]]<br />
</div>
+
[[Li2(z)=zPhi(z,2,1)]]<br />
</div>
+
[[Li 2(z)=-Li 2(1/z)-(1/2)(log z)^2 + i pi log(z) + pi^2/3]]<br />
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=References=
<strong>Theorem:</strong> The following formula holds:
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Relationship between dilogarithm and log(1-z)/z}}: $\S 1.11.1 (22)$
$$\mathrm{Li}_2(z)=-\mathrm{Li}_2 \left( \dfrac{1}{z} \right) - \dfrac{1}{2} \left( \log(z) \right)^2 + \pi i \log(z) + \dfrac{\pi^2}{3}.$$
+
* {{BookReference|Dilogarithms and Associated Functions|1958|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
<div class="mw-collapsible-content">
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Li_2(z)+Li_2(1-z)=pi^2/6-log(z)log(1-z)}}: $27.7.2$ (<i>note: writes $\mathrm{Li}_2$ as $\sum_{k=1}^{\infty} \frac{(-1)^k(x-1)^k}{k^2}$ for $0 \leq x \leq 2$, equivalent to our definition on $\mathbb{R}$</i>)
<strong>Proof:</strong> █
+
* {{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
</div>
+
* {{BookReference|Structural Properties of Polylogarithms|1991|Leonard Lewin|next=Relationship between dilogarithm and log(1-z)/z}}: $(1.1)$
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{Li}_2(x)+\mathrm{Li}_2(-x)=\dfrac{1}{2}\mathrm{Li}_2(x^2).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{Li}_2(1-x)+\mathrm{Li}_2 \left(1-\dfrac{1}{x} \right)=-\dfrac{1}{2}\left( \log x \right)^2.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{Li}_2(x)+\mathrm{Li}_2(1-x)=\dfrac{\pi^2}{6} - (\log x) \log(1-x).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{Li}_2(-x)-\mathrm{Li}_2(1-x)+\dfrac{1}{2}\mathrm{Li}_2(1-x^2)=-\dfrac{\pi^2}{12} - (\log x) \log(x+1).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
=References=
 
 
[http://authors.library.caltech.edu/43491/1/Volume%201.pdf (page 31)]<br />
 
[http://authors.library.caltech.edu/43491/1/Volume%201.pdf (page 31)]<br />
 
[http://maths.dur.ac.uk/~dma0hg/dilog.pdf The Dilogarithm function]<br />
 
[http://maths.dur.ac.uk/~dma0hg/dilog.pdf The Dilogarithm function]<br />
 
[http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/978-3-540-30308-4_1/fulltext.pdf]<br />
 
[http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/978-3-540-30308-4_1/fulltext.pdf]<br />
 +
 +
{{:Logarithm and friends footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 23:22, 3 March 2018

The dilogarithm function $\mathrm{Li}_2$ is defined for $|z| \leq 1$ by $$\mathrm{Li}_2(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{k^2},$$ which is a special case of the polylogarithm.

Properties

Relationship between dilogarithm and log(1-z)/z
Relationship between Li 2(1),Li 2(-1), and pi
Li 2(1)=pi^2/6
Relationship between Li 2(-1/x),Li 2(-x),Li 2(-1), and log^2(x)
Derivative of Li 2(-1/x)
Li2(z)=zPhi(z,2,1)
Li 2(z)=-Li 2(1/z)-(1/2)(log z)^2 + i pi log(z) + pi^2/3

References

(page 31)
The Dilogarithm function
[1]

Logarithm and friends