Difference between revisions of "Modified Bessel K"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Domaincoloringbesselksub1.png|[[Domain coloring]] of $K_1(z)$.
+
File:Besselk,n=0plot.png|Graph of $K_0$.
 +
File:Multiplebesselkplot.png|Graphs of $K_0$, $K_1$, $K_2$, and $K_3$.
 +
File:Domaincoloringbesselksub1.png|[[Domain coloring]] of $K_1$.
 
File:Page 374 (Abramowitz&Stegun).jpg|Modified Bessel functions from Abramowitz&Stegun.
 
File:Page 374 (Abramowitz&Stegun).jpg|Modified Bessel functions from Abramowitz&Stegun.
 
</gallery>
 
</gallery>
Line 12: Line 14:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between Airy Ai and modified Bessel K]]
<strong>Proposition:</strong> The following formula holds:
 
$$K_{\frac{1}{2}}(z)=\sqrt{\dfrac{\pi}{2}}\dfrac{e^{-z}}{\sqrt{z}}; z>0.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
{{:Relationship between Airy Ai and modified Bessel K}}
 
 
 
<center>{{:Bessel functions footer}}</center>
 
  
 
=References=
 
=References=
Line 28: Line 20:
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]
 +
 +
{{:Bessel functions footer}}

Latest revision as of 23:46, 10 June 2016

The modified Bessel function of the second kind is defined by $$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$ where $I_{\nu}$ is the modified Bessel function of the first kind.


Properties

Relationship between Airy Ai and modified Bessel K

References

[1]

Bessel functions