Difference between revisions of "Weierstrass elliptic"
From specialfunctionswiki
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
The Weierstrass elliptic function is | The Weierstrass elliptic function is | ||
$$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$ | $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$ | ||
+ | |||
+ | =Videos= | ||
+ | [https://www.youtube.com/watch?v=A8fsU97g3tg Elliptic curves and modular forms] <br /> | ||
+ | [https://www.youtube.com/watch?v=WnaUZrPnZ30 Weierstrass Elliptic Function -- adding terms]<br /> | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 00:02, 2 June 2016
The Weierstrass elliptic function is $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$
Videos
Elliptic curves and modular forms
Weierstrass Elliptic Function -- adding terms