Difference between revisions of "Stieltjes constants"
From specialfunctionswiki
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
The Stieltjes constants are defined by | The Stieltjes constants are defined by | ||
$$\gamma_n = \displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^m \dfrac{\log^n(k)}{k} - \dfrac{\log^{n+1}(m)}{n+1} \right]$$ | $$\gamma_n = \displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^m \dfrac{\log^n(k)}{k} - \dfrac{\log^{n+1}(m)}{n+1} \right]$$ | ||
+ | |||
+ | =Properties= | ||
+ | [[Laurent series of the Riemann zeta function]]<br /> | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 00:53, 9 December 2016
The Stieltjes constants are defined by $$\gamma_n = \displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^m \dfrac{\log^n(k)}{k} - \dfrac{\log^{n+1}(m)}{n+1} \right]$$