Difference between revisions of "Trigamma"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The trigamma function $\psi^{(1)}$ is defined by $$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$ where $\log \Gamma$ denotes the loggamma function.")
 
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$
 
$$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$
 
where $\log \Gamma$ denotes the [[loggamma]] function.
 
where $\log \Gamma$ denotes the [[loggamma]] function.
 +
 +
<div align="center">
 +
<gallery>
 +
File:Complexpolygamma,k=1plot.png|Domain coloring of $\psi^{(1)}$.
 +
</gallery>
 +
</div>
 +
 +
=See Also=
 +
[[Digamma]]<br />
 +
[[Polygamma]]<br />
 +
 +
=References=
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 03:11, 21 December 2016

The trigamma function $\psi^{(1)}$ is defined by $$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$ where $\log \Gamma$ denotes the loggamma function.

See Also

Digamma
Polygamma

References