Difference between revisions of "Trigamma"
From specialfunctionswiki
(Created page with "The trigamma function $\psi^{(1)}$ is defined by $$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$ where $\log \Gamma$ denotes the loggamma function.") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
$$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$ | $$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$ | ||
where $\log \Gamma$ denotes the [[loggamma]] function. | where $\log \Gamma$ denotes the [[loggamma]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complexpolygamma,k=1plot.png|Domain coloring of $\psi^{(1)}$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =See Also= | ||
+ | [[Digamma]]<br /> | ||
+ | [[Polygamma]]<br /> | ||
+ | |||
+ | =References= | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 03:11, 21 December 2016
The trigamma function $\psi^{(1)}$ is defined by $$\psi^{(1)}(z)=\dfrac{\mathrm{d}^2}{\mathrm{d}z^2} \log \Gamma(z),$$ where $\log \Gamma$ denotes the loggamma function.