Difference between revisions of "Second q-shifted factorial"
From specialfunctionswiki
(Created page with "The $q$-shifted factorial $\lt a;q \rt_n$ is given by $$\lt a;q \rt_n = \left\{ \begin{array}{ll} 1, & n=0; \displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots \end{arr...") |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The $q$-shifted factorial $\ | + | The $q$-shifted factorial $\langle a;q \rangle_n$ (not to be confused with the [[q-shifted factorial|$q$-shifted factorial]] $(a;q)_n$ or the [[q-factorial|$q$-factorial]] $[n]_q!$) is given by |
− | $$\ | + | $$\langle a;q \rangle_n = \left\{ \begin{array}{ll} |
− | 1, & n=0; | + | 1, & n=0; \\ |
− | \displaystyle\prod_{k=0}^{n-1} (1-q^ | + | \displaystyle\prod_{k=0}^{n-1} (1-q^{a+m}), & n=1,2,\ldots |
\end{array} \right.$$ | \end{array} \right.$$ | ||
+ | If $(a)=(a_1,a_2,\ldots,a_m)$ is a vector then we define the notation | ||
+ | $$\langle (a);q \rangle_n = \langle a_1,a_2,\ldots,a_m; q \rangle_n = \displaystyle\prod_{j=1}^m \langle a_j;q \rangle_n.$$ | ||
+ | |||
+ | =Properties= | ||
+ | |||
+ | =References= | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 20:27, 18 December 2016
The $q$-shifted factorial $\langle a;q \rangle_n$ (not to be confused with the $q$-shifted factorial $(a;q)_n$ or the $q$-factorial $[n]_q!$) is given by $$\langle a;q \rangle_n = \left\{ \begin{array}{ll} 1, & n=0; \\ \displaystyle\prod_{k=0}^{n-1} (1-q^{a+m}), & n=1,2,\ldots \end{array} \right.$$ If $(a)=(a_1,a_2,\ldots,a_m)$ is a vector then we define the notation $$\langle (a);q \rangle_n = \langle a_1,a_2,\ldots,a_m; q \rangle_n = \displaystyle\prod_{j=1}^m \langle a_j;q \rangle_n.$$