Difference between revisions of "Second q-shifted factorial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $q$-shifted factorial $\lt a;q \rt_n$ is given by $$\lt a;q \rt_n = \left\{ \begin{array}{ll} 1, & n=0; \displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots \end{arr...")
 
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
The $q$-shifted factorial $\lt a;q \rt_n$ is given by
+
The $q$-shifted factorial $\langle a;q \rangle_n$ (not to be confused with the [[q-shifted factorial|$q$-shifted factorial]] $(a;q)_n$ or the [[q-factorial|$q$-factorial]] $[n]_q!$) is given by
$$\lt a;q \rt_n = \left\{ \begin{array}{ll}
+
$$\langle a;q \rangle_n = \left\{ \begin{array}{ll}
1, & n=0;
+
1, & n=0; \\
\displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots
+
\displaystyle\prod_{k=0}^{n-1} (1-q^{a+m}), & n=1,2,\ldots
 
\end{array} \right.$$
 
\end{array} \right.$$
 +
If $(a)=(a_1,a_2,\ldots,a_m)$ is a vector then we define the notation
 +
$$\langle (a);q \rangle_n = \langle a_1,a_2,\ldots,a_m; q \rangle_n = \displaystyle\prod_{j=1}^m \langle a_j;q \rangle_n.$$
 +
 +
=Properties=
 +
 +
=References=
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 20:27, 18 December 2016

The $q$-shifted factorial $\langle a;q \rangle_n$ (not to be confused with the $q$-shifted factorial $(a;q)_n$ or the $q$-factorial $[n]_q!$) is given by $$\langle a;q \rangle_n = \left\{ \begin{array}{ll} 1, & n=0; \\ \displaystyle\prod_{k=0}^{n-1} (1-q^{a+m}), & n=1,2,\ldots \end{array} \right.$$ If $(a)=(a_1,a_2,\ldots,a_m)$ is a vector then we define the notation $$\langle (a);q \rangle_n = \langle a_1,a_2,\ldots,a_m; q \rangle_n = \displaystyle\prod_{j=1}^m \langle a_j;q \rangle_n.$$

Properties

References