Difference between revisions of "Hankel H (1)"
From specialfunctionswiki
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The Hankel functions of the first kind are defined by | The Hankel functions of the first kind are defined by | ||
$$H_{\nu}^{(1)}(z)=J_{\nu}(z)+iY_{\nu}(z),$$ | $$H_{\nu}^{(1)}(z)=J_{\nu}(z)+iY_{\nu}(z),$$ | ||
− | where $J_{\nu}$ is the [[Bessel J | + | where $J_{\nu}$ is the [[Bessel J|Bessel function of the first kind]] and $Y_{\nu}$ is the [[Bessel Y sub nu|Bessel function of the second kind]]. Note the similarity of these functions to the [[Hankel H sub nu (2)|Hankel functions of the second kind]]. |
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
− | File:Complex hankel H1 sub 1.png|[[Domain coloring | + | File:Complex hankel H1 sub 1.png|[[Domain coloring]] of $H_1^{(1)}(z)$. |
File:Page 359Abramowitz-Stegun(Bessel functions).jpg|Bessel functions from [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/ Abramowitz&Stegun] | File:Page 359Abramowitz-Stegun(Bessel functions).jpg|Bessel functions from [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/ Abramowitz&Stegun] | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
− | < | + | =See Also= |
+ | [[Bessel J|Bessel $J$]]<br /> | ||
+ | [[Bessel Y|Bessel $Y$]]<br /> | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Bessel Y|next=Hankel H (1) in terms of csc and Bessel J}}: 9.1.3 | ||
+ | |||
+ | {{:Hankel functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 23:59, 22 December 2016
The Hankel functions of the first kind are defined by $$H_{\nu}^{(1)}(z)=J_{\nu}(z)+iY_{\nu}(z),$$ where $J_{\nu}$ is the Bessel function of the first kind and $Y_{\nu}$ is the Bessel function of the second kind. Note the similarity of these functions to the Hankel functions of the second kind.
Domain coloring of $H_1^{(1)}(z)$.
Bessel functions from Abramowitz&Stegun
See Also
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 9.1.3
Hankel $H_{\nu}^{(1)}$