Difference between revisions of "Li 2(1)=pi^2/6"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathrm{Li}_2(1) = \dfrac{\pi^2}{6},$$ where $\mathrm{Li}$ denotes the dilogarithm and $\pi$ denotes pi. ==References== {{B...")
 
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
$$\mathrm{Li}_2(1) = \dfrac{\pi^2}{6},$$
 
$$\mathrm{Li}_2(1) = \dfrac{\pi^2}{6},$$
 
where $\mathrm{Li}$ denotes the [[dilogarithm]] and $\pi$ denotes [[pi]].
 
where $\mathrm{Li}$ denotes the [[dilogarithm]] and $\pi$ denotes [[pi]].
 +
 +
==Proof==
  
 
==References==
 
==References==
{{BookReference|Polylogarithms and Associated Functions|1926|ed=2nd|edpage=Second Edition|Leonard Lewin|prev=Relationship between Li 2(1),Li 2(-1), and pi|next=}}: (1.9)
+
{{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|prev=Relationship between Li 2(1),Li 2(-1), and pi|next=findme}}: $(1.9)$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 04:22, 30 June 2016

Theorem

The following formula holds: $$\mathrm{Li}_2(1) = \dfrac{\pi^2}{6},$$ where $\mathrm{Li}$ denotes the dilogarithm and $\pi$ denotes pi.

Proof

References

1981: Leonard Lewin: Polylogarithms and Associated Functions (2nd ed.) ... (previous) ... (next): $(1.9)$