Difference between revisions of "Euler E generating function"
From specialfunctionswiki
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | The following formula holds: | + | The following formula holds for $|z|<\pi$: |
$$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!},$$ | $$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!},$$ | ||
where $e^{xt}$ denotes the [[exponential function]] and $E_n$ denotes an [[Euler E]] polynomial. | where $e^{xt}$ denotes the [[exponential function]] and $E_n$ denotes an [[Euler E]] polynomial. | ||
Line 7: | Line 7: | ||
==References== | ==References== | ||
+ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Euler numbers|next=Euler E n'(x)=nE n-1(x)}}: $\S 1.14 (2)$ | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 01:05, 4 March 2018
Theorem
The following formula holds for $|z|<\pi$: $$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!},$$ where $e^{xt}$ denotes the exponential function and $E_n$ denotes an Euler E polynomial.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.14 (2)$