Difference between revisions of "Secant"

From specialfunctionswiki
Jump to: navigation, search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 +
 
The secant function is defined by
 
The secant function is defined by
$$\sec(z)=\dfrac{1}{\cos(z)}.$$
+
$$\sec(z)=\dfrac{1}{\cos(z)},$$
 +
where $\cos$ denotes the [[cosine]].
  
 
<div align="center">
 
<div align="center">
Line 6: Line 9:
 
File:Secantplot.png|Graph of $\sec$ over $[-2\pi,2\pi]$.
 
File:Secantplot.png|Graph of $\sec$ over $[-2\pi,2\pi]$.
 
File:Complexsecantplot.png|[[Domain coloring]] of $\sec$.
 
File:Complexsecantplot.png|[[Domain coloring]] of $\sec$.
 +
File:Trig Functions Diagram.svg|Trig functions diagram using the unit circle.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
  
 
=Properties=
 
=Properties=
{{:Derivative of secant}}
+
[[Derivative of secant]]<br />
{{:Relationship between secant, Gudermannian, and cosh}}
+
[[Relationship between secant, Gudermannian, and cosh]]<br />
{{:Relationship between cosh, inverse Gudermannian, and sec}}
+
[[Relationship between cosh, inverse Gudermannian, and sec]]<br />
  
 
=See Also=
 
=See Also=
Line 20: Line 24:
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosine|next=Tangent}}: 4.3.147
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosecant|next=Cotangent}}: 4.3.5
  
<center>{{:Trigonometric functions footer}}</center>
+
{{:Trigonometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 20:45, 26 February 2017


The secant function is defined by $$\sec(z)=\dfrac{1}{\cos(z)},$$ where $\cos$ denotes the cosine.

Properties

Derivative of secant
Relationship between secant, Gudermannian, and cosh
Relationship between cosh, inverse Gudermannian, and sec

See Also

Arcsec
Sech
Arcsech

References

Trigonometric functions