Difference between revisions of "Haversine"
From specialfunctionswiki
(Created page with "The haversine function $\mathrm{haversin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by $$\mathrm{haversin}(z)=\dfrac{\mathrm{versin}(z)}{2},$$ where $\mathrm{versin...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
The haversine function $\mathrm{haversin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by | The haversine function $\mathrm{haversin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by | ||
− | $$\mathrm{haversin}(z)=\dfrac{\ | + | $$\mathrm{haversin}(z)=\dfrac{1-\cos(z)}{2},$$ |
− | where $\ | + | where $\cos$ denotes [[cosine]]. |
=Properties= | =Properties= | ||
=References= | =References= | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Coversine|next=Exsecant}}: 4.3.147 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Coversine|next=Exsecant}}: $4.3.147$ |
[[Category:SpecialFunction]] [[Category:Definition]] | [[Category:SpecialFunction]] [[Category:Definition]] |
Latest revision as of 03:45, 28 March 2017
The haversine function $\mathrm{haversin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by $$\mathrm{haversin}(z)=\dfrac{1-\cos(z)}{2},$$ where $\cos$ denotes cosine.
Properties
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.3.147$