Difference between revisions of "Exsecant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The exsecant function $\mathrm{exsec}$ is defined by $$\mathrm{exsec}(z)=\sec(z)-1,$$ where $\sec$ denotes the secant. =Properties= =References= * {{BookReference|Handbo...")
 
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\mathrm{exsec}(z)=\sec(z)-1,$$
 
$$\mathrm{exsec}(z)=\sec(z)-1,$$
 
where $\sec$ denotes the [[secant]].
 
where $\sec$ denotes the [[secant]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Trig Functions Diagram.svg|Trig functions diagram using the unit circle.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
 +
[[Derivative of exsecant]] <br />
 +
[[Antiderivative of exsecant]] <br />
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Haversine|next=Law of Sines}}: 4.3.147
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Haversine|next=Law of Sines}}: $4.3.147$
  
[[Category:SpecialFunctions]] [[Category:Definition]]
+
[[Category:SpecialFunction]]
 +
[[Category:Definition]]

Latest revision as of 04:11, 28 March 2017

The exsecant function $\mathrm{exsec}$ is defined by $$\mathrm{exsec}(z)=\sec(z)-1,$$ where $\sec$ denotes the secant.

Properties

Derivative of exsecant
Antiderivative of exsecant

References