Difference between revisions of "Arccos"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
The function $\mathrm{arccos} \colon [-1,1] \longrightarrow [0,\pi]$ is the [[inverse function]] of the [[cosine]] function.
+
__NOTOC__
 +
The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by
 +
$$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$
 +
where $i$ denotes the [[imaginary number]] and $\log$ denotes the [[logarithm]].
  
 
<div align="center">
 
<div align="center">
Line 9: Line 12:
  
 
=Properties=
 
=Properties=
 +
[[Arccos as inverse cosine]]<br />
 
[[Derivative of arccos]]<br />
 
[[Derivative of arccos]]<br />
 
[[Antiderivative of arccos]]<br />
 
[[Antiderivative of arccos]]<br />
Line 20: Line 24:
 
[[Arccosh]]  
 
[[Arccosh]]  
  
<center>{{:Inverse trigonometric functions footer}}</center>
+
{{:Inverse trigonometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 20:04, 22 November 2016

The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ where $i$ denotes the imaginary number and $\log$ denotes the logarithm.

Properties

Arccos as inverse cosine
Derivative of arccos
Antiderivative of arccos

References

Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html

See Also

Cosine
Cosh
Arccosh

Inverse trigonometric functions