Difference between revisions of "Secant"

From specialfunctionswiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
  
 
The secant function is defined by
 
The secant function is defined by
$$\sec(z)=\dfrac{1}{\cos(z)}.$$
+
$$\sec(z)=\dfrac{1}{\cos(z)},$$
 +
where $\cos$ denotes the [[cosine]].
  
 
<div align="center">
 
<div align="center">
Line 25: Line 26:
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosecant|next=Cotangent}}: 4.3.5
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosecant|next=Cotangent}}: 4.3.5
  
<center>{{:Trigonometric functions footer}}</center>
+
{{:Trigonometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 20:45, 26 February 2017


The secant function is defined by $$\sec(z)=\dfrac{1}{\cos(z)},$$ where $\cos$ denotes the cosine.

Properties

Derivative of secant
Relationship between secant, Gudermannian, and cosh
Relationship between cosh, inverse Gudermannian, and sec

See Also

Arcsec
Sech
Arcsech

References

Trigonometric functions