Difference between revisions of "Meromorphic continuation of q-exponential E sub q"
From specialfunctionswiki
(Created page with "==Theorem== The following meromorphic continuation of $E_q$ holds: $$E_q(z)=\dfrac{1}{(z(1-q);q)_{\infty}},$$ where $(z(1-q);q)_{\infty}$ denotes the q-Pochhammer symbol...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-exponential E sub q|next=q-difference equation for q-exponential E sub q}}: (6.151) | + | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-exponential E sub q|next=q-difference equation for q-exponential E sub q}}: ($6.151$) |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 07:40, 18 December 2016
Theorem
The following meromorphic continuation of $E_q$ holds: $$E_q(z)=\dfrac{1}{(z(1-q);q)_{\infty}},$$ where $(z(1-q);q)_{\infty}$ denotes the q-Pochhammer symbol.
Proof
References
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous) ... (next): ($6.151$)