Difference between revisions of "Meromorphic continuation of q-exponential E sub q"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following meromorphic continuation of $E_q$ holds: $$E_q(z)=\dfrac{1}{(z(1-q);q)_{\infty}},$$ where $(z(1-q);q)_{\infty}$ denotes the q-Pochhammer symbol...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-exponential E sub q|next=q-difference equation for q-exponential E sub q}}: (6.151)
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-exponential E sub q|next=q-difference equation for q-exponential E sub q}}: ($6.151$)
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 07:40, 18 December 2016

Theorem

The following meromorphic continuation of $E_q$ holds: $$E_q(z)=\dfrac{1}{(z(1-q);q)_{\infty}},$$ where $(z(1-q);q)_{\infty}$ denotes the q-Pochhammer symbol.

Proof

References