Difference between revisions of "Digamma functional equation"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\psi(z)=\psi(z+1)-\dfrac{1}{z},$$ where $\psi$ denotes the digamma function. ==Proof== ==References== * {{BookReference|Higher...")
 
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Digamma at n+1}}: $\S 1.7 (8)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Digamma at n+1}}: $\S 1.7 (8)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Digamma at n+1/2|next=findme}}: $6.3.5$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:22, 3 March 2018

Theorem

The following formula holds: $$\psi(z)=\psi(z+1)-\dfrac{1}{z},$$ where $\psi$ denotes the digamma function.

Proof

References