Difference between revisions of "Book:Johan Thim/Continuous Nowhere Differentiable Functions"
From specialfunctionswiki
(Created page with "{{Book|Continuous Nowhere Differentiable Functions|2003|Luleå University of Technology Master's Thesis||Johan Thim}} ===Online copies=== [https://pure.ltu.se/ws/files/309239...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 13: | Line 13: | ||
::3.4 Weierstrass function (1872) | ::3.4 Weierstrass function (1872) | ||
::3.5 Darboux function (1873) | ::3.5 Darboux function (1873) | ||
+ | :::[[Darboux function]] | ||
+ | :::[[Schwarz function]] | ||
::3.6 Peano function (1890) | ::3.6 Peano function (1890) | ||
::3.7 Takagi (1903) and van der Waerden (1930) functions | ::3.7 Takagi (1903) and van der Waerden (1930) functions | ||
Line 34: | Line 36: | ||
::Index of Names | ::Index of Names | ||
::Index of Subjects | ::Index of Subjects | ||
+ | |||
+ | [[Category:Book]] |
Latest revision as of 18:04, 25 June 2017
Johan Thim: Continuous Nowhere Differentiable Functions
Published $2003$, Luleå University of Technology Master's Thesis.
Online copies
hosted by Luleå University of Technology
Contents
- 1 Introduction
- 2 Series and Convergence
- 3 Functions Through the Ages
- 3.1 Bolzano function (≈1830)
- 3.2 Cellérier function (≈1860)
- 3.3 Riemann function (≈1861)
- 3.4 Weierstrass function (1872)
- 3.5 Darboux function (1873)
- 3.6 Peano function (1890)
- 3.7 Takagi (1903) and van der Waerden (1930) functions
- 3.8 Koch "snowflake" curve (1904)
- 3.9 Faber functions (1907, 1908)
- 3.10 Sierpiński curve (1912)
- 3.11 Knopp function (1918)
- 3.12 Petr function (1920)
- 3.13 Shoenberg function (1938)
- 3.14 Orlicz functions (1947)
- 3.15 McCarthy function (1953)
- 3.16 Katsuura function (1991)
- 3.17 Lynch function (1992)
- 3.18 Wen function (2002)
- 4 How "Large" is the Set $\mathcal{ND}[a,b]$
- 4.1 Metric spaces and category
- 4.2 Banach-Mazurkiewicz theorem
- 4.3 Prevalence of $\mathcal{ND}[0,1]$
- Bibliography
- Index
- Index of Names
- Index of Subjects