Difference between revisions of "Airy zeta function"
From specialfunctionswiki
Line 6: | Line 6: | ||
=References= | =References= | ||
− | + | * {{PaperReference|On the quantum zeta function|1996|Richard E. Crandall}} | |
− | |||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 02:16, 2 November 2016
The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$