Difference between revisions of "Euler E"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
Line 12: Line 12:
 
=Properties=
 
=Properties=
 
[[Euler E generating function]]<br />
 
[[Euler E generating function]]<br />
 +
[[Euler E n'(x)=nE n-1(x)]]<br />
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
<strong>Theorem:</strong> The following formula holds:
 
$$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$
 
$$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$E_n'(x)=nE_{n-1}(x);n=1,2,\ldots.$$
 
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Latest revision as of 01:05, 4 March 2018

The Euler polynomials $E_n(x)$ are orthogonal polynomials defined by $$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$ where $e_k$ denotes an Euler number.

  • $E_0(x)=1$
  • $E_1(x)=x-\dfrac{1}{2}$
  • $E_2(x)=x^2-x$
  • $E_3(x)=x^3-\dfrac{3}{2}x^2+\dfrac{1}{4}$
  • $E_4(x)=x^4-2x^3+x$

Properties

Euler E generating function
Euler E n'(x)=nE n-1(x)

Theorem: The following formula holds: $$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$

Proof:


Orthogonal polynomials