Difference between revisions of "Derivative of Jacobi theta 1 at 0"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\vartheta_1'(0,q)=\vartheta_2(0,q) \vartheta_3(0,q) \vartheta_4(0,q),$$ where $\vartheta_1$ denotes the Jacobi theta 1, $\varthe...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3|next=Logarithmic derivative of Jacobi theta 1 equals cotangent + a sum of sines}}: $16.28.6$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 18:04, 5 July 2016
Theorem
The following formula holds: $$\vartheta_1'(0,q)=\vartheta_2(0,q) \vartheta_3(0,q) \vartheta_4(0,q),$$ where $\vartheta_1$ denotes the Jacobi theta 1, $\vartheta_2$ denotes the Jacobi theta 2, $\vartheta_3$ denotes Jacobi theta 3, and $\vartheta_4$ denotes Jacobi theta 4.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $16.28.6$