Difference between revisions of "Convergence of Hypergeometric pFq"
(Created page with "=Convergence= If any of the $a_j$'s is a a nonpositive integer, then the series terminates and is a polynomial. If any of the $b_{\ell}$'s is a nonpositive integer, the serie...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | = | + | __NOTOC__ |
− | If any of the $a_j$'s is a a nonpositive integer, then the series terminates and is a polynomial. | + | ==Theorem== |
− | + | Consider the series ${}_pF_q(a_1,a_2,\ldots,a_p;b_1,b_2,\ldots,b_q;z)$, where ${}pF_q$ denotes [[hypergeometric pFq]]. Then, | |
− | If any of the $b_{\ell}$'s is a nonpositive integer, the series diverges because of divison by zero. | + | *If any of the $a_j$'s is a a nonpositive integer, then the series terminates and is a polynomial. |
− | + | *If any of the $b_{\ell}$'s is a nonpositive integer, the series diverges because of divison by zero. | |
− | The remaining convergence of the series can be split into three cases: | + | *The remaining convergence of the series can be split into three cases: |
− | + | **$p<q+1$ | |
+ | **$p=q+1$ | ||
+ | **$p>q+1$ | ||
==Case I: $p<q+1$== | ==Case I: $p<q+1$== | ||
− | + | ===Proposition:=== | |
− | + | The series ${}_pF_q$ converges for all $t \in \mathbb{C}$.<br /> | |
− | + | ===Proof:=== | |
− | + | If $t=0$ then the series converges trivially, so suppose $t \neq 0$. We will apply the [[ratio_test | ratio test]]. Let $\alpha_k=\dfrac{\vec{a}^{\overline{k}}t^k}{\vec{b}^{\overline{k}}k!}$. Then | |
$$\begin{array}{ll} | $$\begin{array}{ll} | ||
L &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\alpha_{k+1}}{\alpha_k} \right| \\ | L &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\alpha_{k+1}}{\alpha_k} \right| \\ | ||
Line 24: | Line 26: | ||
==Case II: $p=q+1$== | ==Case II: $p=q+1$== | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>Proposition:</strong> The | + | <strong>Proposition:</strong> The [[hypergeometric pFq]] ${}_pF_q$ converges for all $t\in \mathbb{C}$ with $|t|<1$.<br /> |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof: █</strong> | <strong>Proof: █</strong> |
Latest revision as of 14:32, 7 October 2016
Theorem
Consider the series ${}_pF_q(a_1,a_2,\ldots,a_p;b_1,b_2,\ldots,b_q;z)$, where ${}pF_q$ denotes hypergeometric pFq. Then,
- If any of the $a_j$'s is a a nonpositive integer, then the series terminates and is a polynomial.
- If any of the $b_{\ell}$'s is a nonpositive integer, the series diverges because of divison by zero.
- The remaining convergence of the series can be split into three cases:
- $p<q+1$
- $p=q+1$
- $p>q+1$
Case I: $p<q+1$
Proposition:
The series ${}_pF_q$ converges for all $t \in \mathbb{C}$.
Proof:
If $t=0$ then the series converges trivially, so suppose $t \neq 0$. We will apply the ratio test. Let $\alpha_k=\dfrac{\vec{a}^{\overline{k}}t^k}{\vec{b}^{\overline{k}}k!}$. Then $$\begin{array}{ll} L &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\alpha_{k+1}}{\alpha_k} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\dfrac{\vec{a}^{\overline{k}}t^k}{\vec{b}^{\overline{k}}k!}}{\dfrac{\vec{a}^{\overline{k+1}}t^{k+1}}{\vec{b}^{\overline{k+1}}(k+1)!}} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\vec{a}^{\overline{k}} \vec{b}^{\overline{k+1}}(k+1)!t^k }{\vec{b}^{\overline{k}} \vec{a}^{\overline{k+1}}k!t^{k+1}} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{k(\vec{b}+k)}{(\vec{a}+k)t} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{O(k^{q+1})}{O(k^{p})}\right| \\ &= 0 < 1, \end{array}$$ therefore the series converges for all $t \in \mathbb{C}$. █ </div></div>
Case II: $p=q+1$
Proposition: The hypergeometric pFq ${}_pF_q$ converges for all $t\in \mathbb{C}$ with $|t|<1$.
Proof: █
Case III: $p>q+1$
Proposition: The series ${}_pF_q$ diverges for all $t \in \mathbb{C}$.
Proof: █