Difference between revisions of "Constant multiple rule for derivatives"

From specialfunctionswiki
Jump to: navigation, search
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Minkowski's inequality for integrals|next=Sum rule for derivatives}}: $3.3.1$
+
{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Minkowski's inequality for integrals|next=Sum rule for derivatives}}: $3.3.1$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 01:55, 21 December 2016

Theorem

Let $f$ and $g$ be differentiable functions and $c$ a constant. Then the following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \left[cf(x) \right] = c f'(x),$$ where $\dfrac{\mathrm{d}}{\mathrm{d}x}$ denotes the derivative operator.

Proof

References

1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $3.3.1$