Difference between revisions of "Series for log(riemann zeta) over primes"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\log \left( \zeta(z) \right)=\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{kp^{mz}},$...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
The following formula holds: | The following formula holds: | ||
− | $$\log \left( \zeta(z) \right)=\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{kp^{ | + | $$\log \left( \zeta(z) \right)=\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{kp^{kz}},$$ |
where $\log$ denotes the [[logarithm]] and $\zeta$ denotes the [[Riemann zeta]]. | where $\log$ denotes the [[logarithm]] and $\zeta$ denotes the [[Riemann zeta]]. | ||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Euler product for Riemann zeta|next=Series for log(Riemann zeta) }}: § Introduction (2') | + | * {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Euler product for Riemann zeta|next=Series for log(Riemann zeta) in terms of Mangoldt function}}: § Introduction $(2')$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 03:09, 1 July 2017
Theorem
The following formula holds: $$\log \left( \zeta(z) \right)=\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{kp^{kz}},$$ where $\log$ denotes the logarithm and $\zeta$ denotes the Riemann zeta.
Proof
References
- 1930: Edward Charles Titchmarsh: The Zeta-Function of Riemann ... (previous) ... (next): § Introduction $(2')$