Difference between revisions of "Takagi function"

From specialfunctionswiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
The Takagi function (also called the blancmange function) is defined by
 
The Takagi function (also called the blancmange function) is defined by
$$\mathrm{takagi}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}}(2^n x)}{2^n}.$$
+
$$\mathrm{takagi}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}}(2^n x)}{2^n},$$
 +
where $\mathrm{dist}_{\mathbb{Z}}$ denotes the [[distance to integers]] function.
 +
 
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
Line 17: Line 19:
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />
 
[http://www.math.tamu.edu/~tvogel/gallery/node7.html]<br />
 
[http://www.math.tamu.edu/~tvogel/gallery/node7.html]<br />
 +
 +
{{:Continuous nowhere differentiable functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 03:33, 6 July 2016

The Takagi function (also called the blancmange function) is defined by $$\mathrm{takagi}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}}(2^n x)}{2^n},$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.

Properties

Takagi function is continuous
Takagi function is nowhere differentiable

See Also

van der Waerden function

References

[1]
[2]

Continuous nowhere differentiable functions