Difference between revisions of "Arccoth"
From specialfunctionswiki
Line 12: | Line 12: | ||
==Properties== | ==Properties== | ||
[[Derivative of arccoth]]<br /> | [[Derivative of arccoth]]<br /> | ||
+ | |||
+ | ==See also== | ||
+ | [[Arccot]] <br /> | ||
+ | [[Cotangent]]<br /> | ||
+ | [[Coth]]<br /> | ||
{{:Inverse hyperbolic trigonometric functions footer}} | {{:Inverse hyperbolic trigonometric functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 01:40, 16 September 2016
The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the inverse function of the hyperbolic cotangent function. It may be defined by the following formula: $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right),$$ where $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent.
Domain coloring of $\mathrm{arccoth}$.