Difference between revisions of "(b-a)2F1+a2F1(a+1)-b2F1(b+1)=0"
From specialfunctionswiki
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
The following formula holds: | The following formula holds: | ||
− | $$(b- | + | $$(b-a){}_2F_1(a,b;c;z)+a{}_2F_1(a+1,b;c;z)-b{}_2F_1(a,b+1;c;z)=0,$$ |
where ${}_2F_1$ denotes [[hypergeometric 2F1]]. | where ${}_2F_1$ denotes [[hypergeometric 2F1]]. | ||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953| | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=(c-2a-(b-a)z)2F1+a(1-z)2F1(a+1)-(c-a)2F1(a-1)=0|next=(c-a-b)2F1+a(1-z)2F1(a+1)-(c-b)2F1(b-1)=0}}: $\S 2.8 (32)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:23, 3 March 2018
Theorem
The following formula holds: $$(b-a){}_2F_1(a,b;c;z)+a{}_2F_1(a+1,b;c;z)-b{}_2F_1(a,b+1;c;z)=0,$$ where ${}_2F_1$ denotes hypergeometric 2F1.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 2.8 (32)$