Difference between revisions of "Dirichlet beta in terms of Lerch transcendent"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\beta(x) = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\beta$ denotes Dirichlet beta and $\Phi$ denotes the Lerch tr...") |
(→Proof) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
+ | Starting from the series representations of the Lerch Transcendent and the Dirichlet Beta functions, namely, | ||
+ | |||
+ | $$\Phi (z,\alpha ,y) = \sum_{k=0}^\infty\tfrac{z^k}{(y+k)^\alpha},$$ | ||
+ | |||
+ | and | ||
+ | |||
+ | $$\beta (\alpha ) = \sum_{k=0}^\infty \tfrac{(-1)^k}{(2k+1)^\alpha}.$$ | ||
+ | |||
+ | We have | ||
+ | |||
+ | $$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \sum_{k=0}^\infty\tfrac{(-1)^k}{\left( \dfrac{1}{2}+k\right) ^\alpha} = \beta(\alpha )$$, | ||
+ | |||
+ | and the proof is demonstrated. | ||
==References== | ==References== |
Latest revision as of 12:03, 30 March 2022
Theorem
The following formula holds: $$\beta(x) = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\beta$ denotes Dirichlet beta and $\Phi$ denotes the Lerch transcendent.
Proof
Starting from the series representations of the Lerch Transcendent and the Dirichlet Beta functions, namely,
$$\Phi (z,\alpha ,y) = \sum_{k=0}^\infty\tfrac{z^k}{(y+k)^\alpha},$$
and
$$\beta (\alpha ) = \sum_{k=0}^\infty \tfrac{(-1)^k}{(2k+1)^\alpha}.$$
We have
$$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \sum_{k=0}^\infty\tfrac{(-1)^k}{\left( \dfrac{1}{2}+k\right) ^\alpha} = \beta(\alpha )$$,
and the proof is demonstrated.