Difference between revisions of "Q-derivative"

From specialfunctionswiki
Jump to: navigation, search
(References)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The $q$-derivative is defined by  
 
The $q$-derivative is defined by  
 
$$\dfrac{\mathrm{d}_qf}{\mathrm{d}_qz}=\left\{ \begin{array}{ll}
 
$$\dfrac{\mathrm{d}_qf}{\mathrm{d}_qz}=\left\{ \begin{array}{ll}
\dfrac{f(qz)-f(z)}{qz-z}, & \quad z \neq 0 \\
+
\dfrac{f(qz)-f(z)}{(q-1)z}, & \quad z \neq 0 \\
f'(0), & \quad z=0.
+
f'(0), & \quad z=0,
 
\end{array} \right.$$
 
\end{array} \right.$$
 +
where $f'(0)$ denotes the [[derivative]].
  
 
=Properties=
 
=Properties=
Line 10: Line 11:
  
 
=References=
 
=References=
 +
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=findme|next=Q-derivative power rule}} $(2.1)$
 +
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(1.5)$

Latest revision as of 04:05, 26 December 2016

The $q$-derivative is defined by $$\dfrac{\mathrm{d}_qf}{\mathrm{d}_qz}=\left\{ \begin{array}{ll} \dfrac{f(qz)-f(z)}{(q-1)z}, & \quad z \neq 0 \\ f'(0), & \quad z=0, \end{array} \right.$$ where $f'(0)$ denotes the derivative.

Properties

Relationship between q-derivative and derivative
q-derivative power rule

References