Difference between revisions of "Cosine integral"

From specialfunctionswiki
Jump to: navigation, search
(Videos)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The cosine integral is defined by
+
The cosine integral, $\mathrm{Ci}$, is defined by
 
$$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} \mathrm{d}t, \quad |\mathrm{arg} z|<\pi.$$
 
$$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} \mathrm{d}t, \quad |\mathrm{arg} z|<\pi.$$
  
Line 19: Line 19:
  
 
=References=
 
=References=
*[http://dlmf.nist.gov/8.21 Generalized Sine and Cosine Integrals]
+
* {{BookReference|Special Functions of Mathematical Physics and Chemistry|1956|Ian N. Sneddon|prev=findme|next=Sine integral}}: $\S 5 (5.10)$
  
 
{{:*-integral functions footer}}
 
{{:*-integral functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 15:43, 11 July 2017

The cosine integral, $\mathrm{Ci}$, is defined by $$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} \mathrm{d}t, \quad |\mathrm{arg} z|<\pi.$$

Relationship to other functions

Derivative of cosine integral
Antiderivative of cosine integral
Relationship between exponential integral Ei, cosine integral, and sine integral

Videos

Laplace transform of cosine integral (2 January 2015)

References

$\ast$-integral functions