Difference between revisions of "Sievert integral"

From specialfunctionswiki
Jump to: navigation, search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The Sievert integral is defined by
+
The Sievert integral $S$ is defined by
$$\int_0^{\theta} e^{-z \sec \phi} d \phi.$$
+
$$S(x,\theta)=\int_0^{\theta} e^{-x \sec(\phi)} \mathrm{d} \phi,$$
 +
where $e^{*}$ denotes the [[exponential]] and $\sec$ denotes [[secant]].
  
 
=Properties=
 
=Properties=
 +
[[Asymptotic behavior of Sievert integral]]<br />
 +
[[Relationship between Sievert integral and exponential integral E]]<br />
 +
[[Relationship between Sievert integral and Bessel K]]<br />
  
 
=External links=
 
=External links=
Line 9: Line 13:
  
 
=References=
 
=References=
 +
{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Asymptotic behavior of Sievert integral}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 02:09, 21 December 2016

The Sievert integral $S$ is defined by $$S(x,\theta)=\int_0^{\theta} e^{-x \sec(\phi)} \mathrm{d} \phi,$$ where $e^{*}$ denotes the exponential and $\sec$ denotes secant.

Properties

Asymptotic behavior of Sievert integral
Relationship between Sievert integral and exponential integral E
Relationship between Sievert integral and Bessel K

External links

[1]

References

1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next)