Difference between revisions of "Clausen sine"
From specialfunctionswiki
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined | + | Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the [[analytic continuation]] of the series |
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$ | $$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$ | ||
where $\sin$ denotes [[sine]]. | where $\sin$ denotes [[sine]]. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Clausensine0.5.png|Graph of $\mathrm{Cl}_{0.5}$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= |
Latest revision as of 19:44, 7 September 2020
Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$ where $\sin$ denotes sine.