Difference between revisions of "Clausen cosine"
From specialfunctionswiki
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
$$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^s},$$ | $$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^s},$$ | ||
where $\cos$ denotes [[cosine]]. | where $\cos$ denotes [[cosine]]. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Clausencosine0.5plot.png|Graph of $\tilde{\mathrm{Cl}}_{0.5}$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | Clausenplot.png | ||
+ | |||
=Properties= | =Properties= |
Latest revision as of 18:56, 7 September 2020
Let $s \in \mathbb{C}$. The Clausen cosine function $\tilde{\mathrm{Cl}}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^s},$$ where $\cos$ denotes cosine.
Clausenplot.png