Difference between revisions of "Dirichlet series"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $z \in \mathbb{C}$. A Dirichlet series is a series of the form $$\displaystyle\sum_{k=1}^{\infty} \dfrac{a_k}{k^z}.$$ ==Properties== ==References== {{BookReference|T...")
 
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\displaystyle\sum_{k=1}^{\infty} \dfrac{a_k}{k^z}.$$
 
$$\displaystyle\sum_{k=1}^{\infty} \dfrac{a_k}{k^z}.$$
  
==Properties==
+
=Properties=
  
==References==
+
=General Dirichlet series=
{{BookReference|The General Theory Of Dirichlet's Series|1915|G.H. Hardy|author2=Irene A. Stegun|prev=General Dirichlet series|next=findme}}: $I (2)$ (calls a Dirichlet series an <i>ordinary</i> Dirichlet series)
+
 
 +
=References=
 +
{{BookReference|The General Theory Of Dirichlet's Series|1915|G.H. Hardy|author2=Marcel Riesz|prev=General Dirichlet series|next=findme}}: $I.1.(2)$ (calls a Dirichlet series an <i>ordinary</i> Dirichlet series)
  
 
[[Category:Definition]]
 
[[Category:Definition]]

Latest revision as of 23:27, 17 March 2017

Let $z \in \mathbb{C}$. A Dirichlet series is a series of the form $$\displaystyle\sum_{k=1}^{\infty} \dfrac{a_k}{k^z}.$$

Properties

General Dirichlet series

References

1915: G.H. Hardy and Marcel Riesz: The General Theory Of Dirichlet's Series ... (previous) ... (next): $I.1.(2)$ (calls a Dirichlet series an ordinary Dirichlet series)