Difference between revisions of "F(2n+1)=F(n+1)^2+F(n)^2"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$F(2n+1)=F(n+1)^2+F(n)^2,$$ where $F(n)$ denotes a Fibonacci number. ==Proof== ==References== * {{PaperRefere...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)=F(n+1)+F(n-1)|next=}}  
+
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)=F(n+1)+F(n-1)|next=F(2n)=F(n+1)^2-F(n-1)^2}}  
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 00:29, 25 May 2017

Theorem

The following formula holds: $$F(2n+1)=F(n+1)^2+F(n)^2,$$ where $F(n)$ denotes a Fibonacci number.

Proof

References