Difference between revisions of "F(2n+1)=F(n+1)^2+F(n)^2"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$F(2n+1)=F(n+1)^2+F(n)^2,$$ where $F(n)$ denotes a Fibonacci number. ==Proof== ==References== * {{PaperRefere...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)=F(n+1)+F(n-1)|next=}} | + | * {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)=F(n+1)+F(n-1)|next=F(2n)=F(n+1)^2-F(n-1)^2}} |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 00:29, 25 May 2017
Theorem
The following formula holds: $$F(2n+1)=F(n+1)^2+F(n)^2,$$ where $F(n)$ denotes a Fibonacci number.