Difference between revisions of "2F0(a,b;;z)2F0(a,b;;-z)=4F1(a,b,a/2+b/2,a/2+b/2+1/2;a+b;4z^2)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $${}_2F_0(a,b;;z){}_2F_0(a,b;;-z)={}_4F_1 \left(a, b, \dfrac{a}{2} + \dfrac{b}{2}, \dfrac{a}{2} + \dfrac{b}{2} + \dfrac{1}{2}; a+b; 4z...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953| | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=0F1(;r;z)0F1(;r;-z)=0F3(r,r/2,r/2+1/2;-z^2/4)|next=1F1(a;r;z)1F1(a;r;-z)=2F3(a,r-a;r,r/2,r/2+1/2;z^2/4)}}: $4.2 (4)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:25, 3 March 2018
Theorem
The following formula holds: $${}_2F_0(a,b;;z){}_2F_0(a,b;;-z)={}_4F_1 \left(a, b, \dfrac{a}{2} + \dfrac{b}{2}, \dfrac{a}{2} + \dfrac{b}{2} + \dfrac{1}{2}; a+b; 4z^2 \right),$$ where ${}_2F_0$ denotes hypergeometric 2F0 and ${}_4F_1$ denotes hypergeometric 4F1.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.2 (4)$