Difference between revisions of "Basic hypergeometric phi"

From specialfunctionswiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
[[Exponential e in terms of basic hypergeometric phi]]
+
[[Exponential e in terms of basic hypergeometric phi]]<br />
 +
[[1Phi0(a;;z) as infinite product]]<br />
  
 
=References=
 
=References=
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=q-shifted factorial|next=1Phi0(a;;z) as infinite product}}: $4.8 (3)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=q-shifted factorial|next=1Phi0(a;;z) as infinite product}}: $4.8 (3)$
  
 
=See Also=
 
=See Also=

Latest revision as of 23:26, 3 March 2018

The basic hypergeometric series ${}_r\phi{}_s$ is defined by $${}_r \phi_s(a_1,a_2,\ldots,a_r; b_1,b_2,\ldots,b_s; z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1;q)_k(a_2;q)_k \ldots (a_r;q)_k}{(b_1;q)_k (b_2;q)_k \ldots (b_s;q)_k} \dfrac{z^k}{(q;q)_k},$$ where $(a_1;q)_k$ denotes the q-shifted factorial.

Properties

Exponential e in terms of basic hypergeometric phi
1Phi0(a;;z) as infinite product

References

See Also

Hypergeometric pFq
Basic hypergeometric series psi