Difference between revisions of "Beta as product of gamma functions"

From specialfunctionswiki
Jump to: navigation, search
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Beta is symmetric|next=B(x,y+1)=(y/x)B(x+1,y)}}: $\S 1.5 (5)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Beta is symmetric|next=B(x,y+1)=(y/x)B(x+1,y)}}: $\S 1.5 (5)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 20:58, 3 March 2018

Theorem

The following formula holds: $$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ where $B$ denotes the beta function and $\Gamma$ denotes the gamma function.

Proof

References