Difference between revisions of "Two-dimensional Laplace transform"
From specialfunctionswiki
(Created page with "The two-dimensional Laplace transform of a function $f$ is $$\mathscr{L}\{f\}(z_1,z_2)=\displaystyle\int_0^{\infty} \displaystyle\int_0^{\infty} e^{-z_1x-z_2y} \mathrm{d}x \ma...") |
|||
Line 9: | Line 9: | ||
=References= | =References= | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Laplace transform|next=Unit step function}}: $29.1.2$ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Laplace transform|next=Unit step function}}: $29.1.2$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 22:08, 26 August 2017
The two-dimensional Laplace transform of a function $f$ is $$\mathscr{L}\{f\}(z_1,z_2)=\displaystyle\int_0^{\infty} \displaystyle\int_0^{\infty} e^{-z_1x-z_2y} \mathrm{d}x \mathrm{d}y.$$
Properties
See also
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $29.1.2$