Difference between revisions of "Matrix exponential"
From specialfunctionswiki
(Created page with "The $n$-dimensional matrix exponential $\exp_n \colon \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is defined by $$\exp_n(X)=\displaystyle\sum_{k=0}^{\infty} \...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
=Properties= | =Properties= | ||
+ | [[Matrix e^A=limit of (I+A/s)^s]]<br /> | ||
=References= | =References= | ||
+ | * {{BookReference|Functions of Matrices: Theory and Computation|2008|Nicholas Higham|prev=findme|next=Matrix e^A=limit of (I+A/s)^s}}: $(10.1)$ | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 03:10, 26 February 2018
The $n$-dimensional matrix exponential $\exp_n \colon \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is defined by $$\exp_n(X)=\displaystyle\sum_{k=0}^{\infty} \dfrac{X^k}{k!}.$$
Properties
References
- 2008: Nicholas Higham: Functions of Matrices: Theory and Computation ... (previous) ... (next): $(10.1)$