Difference between revisions of "Matrix exponential"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $n$-dimensional matrix exponential $\exp_n \colon \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is defined by $$\exp_n(X)=\displaystyle\sum_{k=0}^{\infty} \...")
 
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
 +
[[Matrix e^A=limit of (I+A/s)^s]]<br />
  
 
=References=
 
=References=
 +
* {{BookReference|Functions of Matrices: Theory and Computation|2008|Nicholas Higham|prev=findme|next=Matrix e^A=limit of (I+A/s)^s}}: $(10.1)$
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 03:10, 26 February 2018

The $n$-dimensional matrix exponential $\exp_n \colon \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is defined by $$\exp_n(X)=\displaystyle\sum_{k=0}^{\infty} \dfrac{X^k}{k!}.$$

Properties

Matrix e^A=limit of (I+A/s)^s

References