Difference between revisions of "Book:Nicholas Higham/Functions of Matrices: Theory and Computation"
From specialfunctionswiki
(One intermediate revision by the same user not shown) | |||
Line 144: | Line 144: | ||
:10 Matrix Exponential | :10 Matrix Exponential | ||
::10.1 Basic Properties | ::10.1 Basic Properties | ||
− | :::[[Matrix | + | :::[[Matrix exponential|$(10.1)$]] |
+ | :::[[Matrix e^A=limit of (I+A/s)^s|$(10.2)$]] | ||
::10.2 Conditioning | ::10.2 Conditioning | ||
::10.3 Scaling and Squaring Method | ::10.3 Scaling and Squaring Method |
Latest revision as of 03:22, 26 February 2018
Nicholas Higham: Functions of Matrices: Theory and Computation
Published $2008$.
- List of Figures
- List of Tables
- Preface
- 1 Theory of Matrix Functions
- 1.1 Introduction
- 1.2 Definitions of $f(A)$
- 1.2.1 Jordan Canonical Form
- 1.2.2 Polynomial Interpolation
- 1.2.3 Cauchy Integral Theorem
- 1.2.4 Equivalence of Definitions
- 1.2.5 Example: Function of Identity Plus Rank-$1$ Matrix
- 1.2.6 Example: Functions of Discrete Fourier Transform Matrix
- 1.3 Properties
- 1.4 Nonprimary Matrix Functions
- 1.5 Existence of (Real) Matrix Squre Roots and Logarithms
- 1.6 Classification of Matrix Square Roots and Logarithms
- 1.7 Principal Square Roots and Logarithms
- 1.8 $f(AB)$ and $f(BA)$
- 1.9 Miscellany
- 1.10 A Brief History of Matrix Functions
- 1.11 Notes and References
- Problems
- 2 Applications
- 2.1 Differential Equations
- 2.1.1 Exponential Integrators
- 2.2 Nuclear Magnetic Resonance
- 2.3 Markov Models
- 2.4 Control Theory
- 2.5 The Nonsymmetric Eigenvalue Problem
- 2.6 Orthogonalization and the Orthogonal Procrustes Problem
- 2.7 Theoretical Particle Physics
- 2.8 Other Matrix Functions
- 2.9 Nonlinear Matrix Equations
- 2.10 Geometric Mean
- 2.11 Pseudospectra
- 2.12 Algebras
- 2.13 Sensitivity Analysis
- 2.14 Other Applications
- 2.14.1 Boundary Value Problems
- 2.14.2 Semidefinite Programming
- 2.14.3 Matrix Sector Function
- 2.14.4 Matrix Disk Function
- 2.14.5 The Average Eye in Optics
- 2.14.6 Computer Graphics
- 2.14.7 Bregman Divergences
- 2.14.8 Structured Matrix Interpolation
- 2.14.9 The Lambert $W$ Function and Delay Differential Equations
- 2.15 Notes and References
- Problems
- 2.1 Differential Equations
- 3 Conditioning
- 3.1 Condition Numbers
- 3.2 Properties of the Fréchet Derivative
- 3.3 Bounding the Condition Number
- 3.4 Computing or Estimating the Condition Number
- 3.5 Notes and References
- Problems
- 4 Techniques for General Functions
- 4.1 Matrix Powers
- 4.2 Polynomial Evaluation
- 4.3 Taylor Series
- 4.4 Rational Approximation
- 4.4.1 Best $L_{\infty}$ Approximation
- 4.4.2 Padé Approximation
- 4.4.3 Evaluating Rational Functions
- 4.5 Diagonalization
- 4.6 Schur Decomposition and Triangular Matrices
- 4.7 Block Diagonalization
- 4.8 Interpolating Polynomial and Characteristic Polynomial
- 4.9 Matrix Iterations
- 4.9.1 Order of Convergence
- 4.9.2 Termination Criteria
- 4.9.3 Convergence
- 4.9.4 Numerical Stability
- 4.10 Preprocessing
- 4.11 Bounds for $\lVert f(A) \rVert$
- 4.12 Notes and References
- Problems
- 5 Matrix Sign Function
- 5.1 Sensitivity and Conditioning
- 5.2 Schur Method
- 5.3 Newton's Method
- 5.4 The Padé Family of Iterations
- 5.5 Scaling the Newton Iteration
- 5.6 Terminating the Iterations
- 5.7 Numerical Stability of Sign Iterations
- 5.8 Numerical Experiments and Algorithm
- 5.9 Best $L_{\infty}$ Approximation
- 5.10 Notes and References
- Problems
- 6 Matrix Square Root
- 6.1 Sensitivity and Conditioning
- 6.2 Schur Method
- 6.3 Newton's Method and Its Variants
- 6.4 Stability and Limiting Accuracy
- 6.4.1 Newton Iteration
- 6.4.2 DB Iterations
- 6.4.3 CR Iteration
- 6.4.4 IN Iteration
- 6.4.5 Summary
- 6.5 Scaling the Newton Iteration
- 6.6 Numerical Experiments
- 6.7 Iterations via the Matrix Sign Function
- 6.8 Special Matrices
- 6.8.1 Binomial Iteration
- 6.8.2 Modified Newton Iterations
- 6.8.3 $M$-Matrices and $H$-Matrices
- 6.8.4 Hermitian Positive Definite Matrices
- 6.9 Computing Small-Normed Square Roots
- 6.10 Comparison of Methods
- 6.11 Involutory Matrices
- 6.12 Notes and References
- Problems
- 7 Matrix $p$th Root
- 7.1 Theory
- 7.2 Schur Method
- 7.3 Newton's Method
- 7.4 Inverse Newton Method
- 7.5 Schur-Newton Method
- 7.6 Matrix Sign Method
- 7.7 Notes and References
- Problems
- 8 The Polar Decomposition
- 8.1 Approximation and Properties
- 8.2 Sensitivity and Conditioning
- 8.3 Newton's Method
- 8.4 Obtaining Iterations via the Matrix Sign Function
- 8.5 The Padé Family of Methods
- 8.6 Scaling the Newton Iteration
- 8.7 Terminating the Iterations
- 8.8 Numerical Stability and Choice of $H$
- 8.9 Algorithm
- 8.10 Notes and References
- Problems
- 9 Schur-Parlett Algorithm
- 9.1 Evaluating Functions of the Atomic Blocks
- 9.2 Evaluating the Upper Triangular Part of $f(T)$
- 9.3 Reordering and Blocking the Schur Function
- 9.4 Schur-Parlett Algorithm for $f(A)$
- 9.5 Preprocessing
- 9.6 Notes and References
- Problems
- 10 Matrix Exponential
- 10.1 Basic Properties
- 10.2 Conditioning
- 10.3 Scaling and Squaring Method
- 10.4 Schur Algorithms
- 10.4.1 Newton Divided Difference Interpolation
- 10.4.2 Schur-Fréchet Algorithm
- 10.4.3 Schur-Parlett Aglorithm
- 10.5 Numerical Experiment
- 10.6 Evaluating the Fréchet Derivative and Its Norm
- 10.6.1 Quadrature
- 10.6.2 The Kronecker Formulae
- 10.6.3 Computing and Estimating the Norm
- 10.7 Miscellany
- 10.7.1 Hermitian Matrices and Best $L_{\infty}$ Approximation
- 10.7.2 Essentially Nonnegative Matrices
- 10.7.3 Preprocessing
- 10.7.4 The $\psi$ Functions
- 10.8 Notes and References
- Problems
- 11 Matrix Logarithm
- 11.1 Basic Properties
- 11.2 Conditioning
- 11.3 Series Expansions
- 11.4 Padé Approximation
- 11.5 Inverse Scaling and Squaring Method
- 11.5.1 Schur Decomposition: Triangular Matrices
- 11.5.2 Full Matrices
- 11.6 Schur Algorithms
- 11.6.1 Schur-Fréchet Algorithm
- 11.6.2 Schur-Parlett Algorithm
- 11.7 Numerical Experiment
- 11.8 Evaluating the Fréchet Derivative
- 11.9 Notes and References
- Problems
- 12 Matrix Cosine and Sine
- 12.1 Basic Properties
- 12.2 Conditioning
- 12.3 Padé Approximation of Cosine
- 12.4 Double Angle Algorithm for Cosine
- 12.5 Numerical Experiment
- 12.6 Double Angle Algorithm for Sine and Cosine
- 12.6.1 Preprocessing
- 12.7 Notes and References
- Problems
- 13 Functions of Matrix Times Vector: $f(A)b$
- 13.1 Representation via Polynomial Interpolation
- 13.2 Krylov Subspace Methods
- 13.2.1 The Arnoldi Process
- 13.2.2 Arnoldi Approximation of $f(A)b$
- 13.2.3 Lanczos Biorthogonalization
- 13.3 Quadrature
- 13.3.1 On the Real Line
- 13.3.2 Contour Integration
- 13.4 Differential Equations
- 13.5 Other Methods
- 13.6 Notes and References
- Problems
- 14 Miscellany
- 14.1 Structured Matrices
- 14.1.2 Monotone Functions
- 14.1.3 Other Structures
- 14.1.4 Data Sparse Representations
- 14.1.5 Computing Structured $f(A)$ for Structured $A$
- 14.2 Exponential Decay of Functions of Banded Matrices
- 14.3 Approximating Entries of Matrix Functions
- 14.1 Structured Matrices
- A Notation
- B Background: Definitions and Useful Facts
- B.1 Basic Notation
- B.2 Eigenvalues and Jordan Canonical Form
- B.3 Invariant Subspaces
- B.4 Special Classes of Matrices
- B.5 Matrix Factorization and Decompositions
- B.6 Pseudoinverse and Orthogonality
- B.6.1 Pseudoinverse
- B.6.2 Projector and Orthogonal Projector
- B.6.3 Partial Isometry
- B.7 Norms
- B.8 Matrix Sequences and Series
- B.9 Perturbation Expansions for Matrix Inverse
- B.10 Sherman-Morrison-Woodbury Formula
- B.11 Nonnegative Matrices
- B.12 Positive (Semi)definite Ordering
- B.13 Kronecker Product and Sum
- B.14 Sylvester Equation
- B.15 Floating Point Arithmetic
- B.16 Divided Differences
- Problems
- C Operation Counts
- D Matrix Function Toolbox
- E Solutions to Problems
- Bibliography
- Index