Difference between revisions of "Buchstab function"
From specialfunctionswiki
Line 1: | Line 1: | ||
The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]] | The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]] | ||
− | $$\dfrac{\mathrm{d}}{\mathrm{d}u}(u\omega(u-1)); u \geq 2$$ | + | $$\dfrac{\mathrm{d}}{\mathrm{d}u}\Big(u\omega(u-1)\Big); u \geq 2$$ |
and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$. | and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$. | ||
Latest revision as of 13:32, 8 November 2024
The Buchstab function is a continuous function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the initial value problem $$\dfrac{\mathrm{d}}{\mathrm{d}u}\Big(u\omega(u-1)\Big); u \geq 2$$ and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.
References
A differential delay equation arising from the Sieve of Eratosthenes