Difference between revisions of "Prime counting"
From specialfunctionswiki
Line 7: | Line 7: | ||
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}.$$ | $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}.$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
− | <strong>Proof:</strong> | + | <strong>Proof:</strong> |
</div> | </div> | ||
</div> | </div> |
Revision as of 15:29, 4 October 2014
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
Properties
Theorem (Prime Number Theorem): The function $\pi(x)$ obeys the formula $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}.$$
Proof: