Difference between revisions of "Euler totient"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The function $\phi$ obeys the formula
 +
$$\phi(n) = \displaystyle\sum_{d|n} \mu(d) \dfrac{n}{d},$$
 +
where the notation $d | n$ indicates that $d$ is a [[divisor]] of $n$ and $\mu$ is the [[Möbius function]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The function $\phi$ obeys the formula
 
<strong>Theorem:</strong> The function $\phi$ obeys the formula

Revision as of 16:21, 4 October 2014

Euler's totient function (sometimes called Euler's $\phi$ function) is the function

$\phi(n) =$ # of positive integers $\leq n$ that are relatively prime to $n$.

Properties

Theorem: The function $\phi$ obeys the formula $$\phi(n) = \displaystyle\sum_{d|n} \mu(d) \dfrac{n}{d},$$ where the notation $d | n$ indicates that $d$ is a divisor of $n$ and $\mu$ is the Möbius function.

Proof: proof goes here █

Theorem: The function $\phi$ obeys the formula $$\phi(n) = n \displaystyle\prod_{p | n} \left( 1 - \dfrac{1}{p} \right),$$ where the notation $p | n$ indicates that $p$ is a prime that divides $n$.

Proof: proof goes here █

Theorem: The following formula holds: $$\phi(n) = n\lim_{s \rightarrow 1} \zeta(s) \displaystyle\sum_{d | n} \mu(d)(e^{\frac{1}{d}})^{s-1},$$ where $\zeta$ is the Riemann zeta function and \mu is the Möbius function, $e$ is the base of the exponential and the notation $d|n$ indicates that $d$ is any divisor of $n$.

Proof: proof goes here █