Difference between revisions of "Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Hurwitz zeta function is defined for $\Re(s)>1$, $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$")
 
Line 1: Line 1:
The Hurwitz zeta function is defined for $\Re(s)>1$,  
+
The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$,  
 
$$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$
 
$$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$

Revision as of 21:09, 7 October 2014

The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$, $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$